ENME

News Story

UMD Microrobotic Work Featured in IEEE Spectrum

UMD Microrobotic Work Featured in IEEE Spectrum

One of Bergbreiter and St. Pierre's tiny pronking robots. Photo source: IEEE Spectrum
One of Bergbreiter and St. Pierre's tiny pronking robots.
Photo source: IEEE Spectrum

IEEE Spectrum, the Institute of Electrical and Electronics Engineers' (IEEE) flagship magazine, recently spotlighted Associate Professor Sarah Bergbreiter (ME/ISR) and graduate student Ryan St. Pierre's work in microrobotics.

The article, "This Is the Tiniest Little Quadruped Robot We've Ever Seen," was featured in their robotics blog and highlighted work the two had presented "on the gait characteristics of magnetically actuated legged robots weighing less than 2 grams" at IEEE's International Conference on Robotics and Automation (ICRA) held last month in Stockholm, Sweden.

The tiny robots, which currently measure at 20mm in length and have the potential to get much smaller, are 3-D printed, and then have magnetically actuated motors added to them. According to the article, "the robot is magnetically actuated, using an externally generated magnetic field. Each of the robot’s four hips has a 2-mm neodymium cube magnet embedded into it, and when you rotate a big magnet in close proximity to the robot, the magnetic field causes those little magnets to rotate as well, spinning the robot’s legs. By changing the dipole orientation of the leg magnets in different combinations, you can cause the robot to move with different gaits, including trotting, waddling, bounding and pronking."

(Video source: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/tiniest-little-quadruped-robot)

Interestingly, the researchers discovered that the pronking motion—a motion where all four limbs lift off the ground simultaneously—was the best gait for moving over flat and mildly uneven terrain. On flat ground, the little robots were able to cover approximately four times their body length per second at this gait. However, as the going got tougher, other gaits outperformed pronking.

Bergbreiter is Director of the Maryland Robotics Center, and holds a joint appointment with both the University of Maryland's Department of Mechanical Engineering and the Institute for Systems Research.

St. Pierre is a third year Ph.D. student in Bergbreiter’s Maryland Microrobotics Laboratory and focuses on locomotion at sub-gram scales and understanding the forces and dynamics involved in building more efficient and effective small-scale robots.

Related Articles:
NASA Selects Bergbreiter Robotics Project for Development
UMD Team's Autonomous Drone Takes 3rd in International Race
Hogan Administration Launches Work Group to Pursue MTI Recommendations for a Possible Autonomous Technology Center
Feathers Not Included
Why a robot can't yet outjump a flea
Raising the Bar on Precision
Miao Yu named Maryland Robotics Center director
Sarah Bergbreiter engineers submillimeter-sized robotic systems
Building a smarter industrial robot
Bio-inspired robots invade Aspen Hill Library

June 6, 2016


Prev   Next

Current Headlines

Alumna Wins Leading Women Award

Students Earn Second Place for ExoHand Design 

The App that Fights Congestion, Emissions

Materials Science Undergrad Receives Scholarship at 2018 Clean Energy Summit

Can Cascading Pools Help Restore the Chesapeake Bay?

Romano Awarded SWE Scholarship

UMD Team's Autonomous Drone Takes 3rd in International Race

UMD Transportation Experts Awarded $1 Million DOE Grant to Reduce Transportation Energy Use and Emissions

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts