Faculty Directory

Stoliarov, Stanislav I.

Stoliarov, Stanislav I.

Professor
Co-director, Fire Testing and Evaluation Center (FireTEC)
Fire Protection Engineering
Mechanical Engineering
3104C J.M. Patterson Building
Website(s):

EDUCATION

  • 2000 Ph.D. (with distinction), Physical Chemistry, The Catholic University of America, Washington, DC
  • 1993 Engineer of Chemical Technology (B.S./M.S. equivalent), Mendeleev Institute of Chemical Technology, Moscow, Russia

BACKGROUND

  • 2020-present: Professor, Department of Fire Protection Engineering, Affiliate Professor, Department of Mechanical Engineering, Co-director, Fire Testing and Evaluation Center (FireTEC), University of Maryland, College Park
  • 2015-2020: Associate Professor, Department of Fire Protection Engineering,  University of Maryland, College Park
  • 2010-2015: Assistant Professor, Department of Fire Protection Engineering, University of Maryland, College Park
  • 2002-2010: Principal Scientist, Fire Research, SRA International, Inc., Egg Harbor Twp., NJ
  • 2000-2002: Post-doctoral Research Associate, Department of Chemical Engineering, University of Massachusetts, Amherst
  • 1995-2000: Graduate Research Assistant, Department of Chemistry, The Catholic University of America, Washington, DC
  • 1993-1995: Junior Engineer, Institute of Energy Problems of Chemical Physics, Moscow, Russia

HONORS AND AWARDS

  • 2020 IAFSS Best Thesis Award “Excellence in Research” (the thesis advisor)
  • 2019 Interflam Best Paper by a Young Researcher (the researcher’s advisor)
  • 2017 IAFSS Sheldon Tieszen Student Paper Award (the student’s advisor)
  • 2016 Editor-in-Chief’s Featured Article, Fire Safety Journal
  • 2016 Mid-Career Research Award, International Forum of Fire Research Directors
  • 2014 NSF CAREER Award
  • 2011 NIST-ARRA Senior Fellowship
  • 2010 Excellence in Technology Transfer Award, Federal Laboratory Consortium
  • 2007 Technical Achievement Award, SRA International, Inc.
  • 2006 Southern New Jersey Outstanding Aviation Research Award
  • 2006 Excellence in Technology Transfer Award, Federal Laboratory Consortium
  • 2004 Significant Technical Achievement Recognition Award, Galaxy Scientific Corp.
  • 2003 Significant Technical Achievement Recognition Award, Galaxy Scientific Corp.
  • 2000 Materials Science Academic Award, Molecular Simulations, Inc.

PROFESSIONAL MEMBERSHIPS

  • International Association for Fire Safety Science (IAFSS)
  • National Fire Protection Association (NFPA)
  • The Combustion Institute
  • Salamander (Fire Protection Engineering Honor Society)

 

  • Material flammability
  • Pyrolysis and smoldering mechanisms
  • Thermophysical properties
  • Flame structure and spread
  • Lithium ion battery safety
  • Fire suppression
  • Research techniques that combine experiments and numerical modeling to gain insight into behavior of complex physical systems

  • Development of numerical pyrolysis model, ThermaKin. ThermaKin enables a detailed analysis and quantitative prediction of the processes that take place inside and at the surface of a burning material in a wide range of fire scenarios. ThermaKin is continuously developed by our group. To request the most recent version of the program, please email to stolia@umd.edu
  • Pyrolysis modeling of charring and intumescent polymers. In this project, a combination of carefully controlled pyrolysis experiments and detailed modeling are used to gain insight into the impact of char formation on the burning rate. A relation between the magnitude of this impact and the structure of the intumescent char is also being investigated.
  • Analysis of impact of flame retardant additives on pyrolysis and combustion of polymeric solids. The goal of this project is to create pyrolysis models that can predict changes in the material flammability with changes in the flame retardant content and, thus, enable intelligent design of flame retardant materials with the fire response tailored for specific applications.
  • Development of Milligram-scale Flame Calorimeter (MFC). This is a novel instrument that simultaneously measures heat release rate, heat of combustion, the yields of carbon monoxide and carbon dioxide, pyrolysis residue yield and airborne particulate yield from a laminar diffusion flame fueled by controlled pyrolysis of a milligram-sized solid sample. This instrument is being used for screening of new flame retardant additives and synergists.
  • Investigation of cascading failure in lithium ion cell arrays. Propagation of thermally induced failure in 18650 cell arrays is analyzed by mounting each array in a specially designed wind tunnel and measuring temperatures of individual cells and production of a range of gaseous species. Subsequent analysis is used to quantify the speed of the failure propagation, heat generation due to chemical reactions between battery materials, and heat production associated with the flaming combustion involving environmental oxygen.
  • Flame spread on coupon-sized solid samples. UL-94 standard testing scenario is systematically analyzed through a combination of experimental measurements and modeling to enable prediction of the test outcome for an arbitrary solid with known pyrolysis properties.

  • Fire Dynamics, ENFP415
  • Enclosure Fire Modeling, ENFP425
  • Numerical Methods with MatLab, ENFP201
  • Advanced Fire Dynamics, ENFP651
  • Fire Dynamics Laboratory, ENFP620
  • Material Flammability, ENFP671

 

  1. Morgan A. B.; Knapp G.;  Stoliarov S. I.; Levchik S. V.; Studying Smoldering to Flaming Transition in Polyurethane Furniture Sub-Assemblies: Effects of Fabrics, Flame Retardants, and Material Type; Fire and Materials; in press (2020); https://doi.org/10.1002/fam.2847
  2. Swann J. D.; Stoliarov S. I.; Determination of Pyrolysis and Combustion Properties of Poly(vinylidene fluoride) using Comprehensive Modeling: Relating Heat Transfer to the Intumescent Char’s Porous Structure; Fire Safety Journal; in press (2020); https://doi.org/10.1016/j.firesaf.2020.103086
  3. Fiola G. J.; Chaudhari D. M.; Stoliarov S. I.; Comparison of Pyrolysis Properties of Extruded and Cast Poly(methyl methacrylate); Fire Safety Journal; in press (2020); https://doi.org/10.1016/j.firesaf.2020.103083
  4. Lee C.; Said A. O.; Stoliarov S. I.; Passive Mitigation of Thermal Runaway Propagation in Dense 18650 Lithium Ion Cell Assemblies; Journal of The Electrochemical Society; vol. 167; 090524 (2020); https://iopscience.iop.org/article/10.1149/1945-7111/ab8978
  5. Sun Q.; Ding Y.; Stoliarov S. I.;  Sun J.; Fontaine G.; Bourbigot S.; Development of a Pyrolysis Model for an Intumescent Flame Retardant System: Poly(lactic acid) Blended with Melamine and Ammonium Polyphosphate; Composites Part B; vol. 194; 108055 (2020); https://doi.org/10.1016/j.compositesb.2020.108055
  6. Swann J. D.; Ding Y.; Stoliarov S. I.; Comparative Analysis of Pyrolysis and Combustion of Bisphenol A Polycarbonate and Poly(ether ether ketone) using Two-dimensional Modeling: A Relation between Thermal Transport and the Physical Structure of the Intumescent Char; Combustion and Flame; vol. 212; pp. 469-485 (2020); https://doi.org/10.1016/j.combustflame.2019.11.017
  7. Swann J. D.; Ding Y.; Stoliarov S. I.; A Quantitative Comparison of the Pyrolysis and Combustion Behavior of Plasticized and Rigid Poly(vinyl chloride) using Two-dimensional Modeling; Fire Safety Journal; vol. 111; 102910; pp. 1-12 (2020); https://doi.org/10.1016/j.firesaf.2019.102910
  8. Said A. O.; Lee C.; Stoliarov S. I.; Experimental Investigation of Cascading Failure in 18650 Lithium Ion Cell Arrays: Impact of Cathode Chemistry; Journal of Power Sources; vol. 446; 227347; pp. 1-14 (2020); https://doi.org/10.1016/j.jpowsour.2019.227347
  9. McKinnon M. B.; Martin G. E.; Stoliarov S. I.; A Pyrolysis Model for Multiple Compositions of a Glass Reinforced Unsaturated Polyester Composite; Journal of Applied Polymer Science; vol. 137; 47697; pp. 1-16 (2020); https://doi.org/10.1002/app.47697
  10. Jung D.; Raffan-Montoya F.; Ramachandran R.; Zhang Y.; Islamoglu T.; Marin G.; Qian E. A.; Dziedzic R. M.; Farha O. K.; Stoliarov S. I.; Spokoyny A. M.; Cross-linked Porous Polyurethane Materials Featuring Dodecaborate Clusters as Inorganic Polyol Equivalents; Chemical Communications; vol. 55; pp. 8852-8855 (2019); https://doi.org/10.1039/c9cc03350e
  11. Leventon I. T.; Stoliarov S. I.; Kraemer R. H.; The Impact of Bromine- and Phosphorous-Based Flame Retardants on Flame Stability and Heat Feedback from Laminar Wall Flames; Fire Safety Journal; vol. 109; 102819; pp. 1-9 (2019); https://doi.org/10.1016/j.firesaf.2019.05.001
  12. Lee C.; Said A. O.; Stoliarov S. I.; Impact of State of Charge and Cell Arrangement on Thermal Runaway Propagation in Lithium Ion Battery Cell Arrays; Transportation Research Record; vol. 2673; pp. 408-417 (2019); https://doi.org/10.1177/0361198119845654
  13. Ding Y.; Swann J. D.; Sun Q.; Stoliarov S. I.; Kraemer R. H.; Development of a Pyrolysis Model for Glass Fiber Reinforced Polyamide 66 Blended with Red Phosphorus: Relationship between Flammability Behavior and Material Composition; Composites Part B; vol. 176; pp. 107263 (2019); https://doi.org/10.1016/j.compositesb.2019.107263
  14. Wang Q.; Maoa B.; Stoliarov S. I.; Sun J.; A Review of Lithium Ion Battery Failure Mechanisms and Fire Prevention Strategies; Progress in Energy and Combustion Science; vol. 73; pp. 95-131 (2019); https://doi.org/10.1016/j.pecs.2019.03.002
  15. Said A. O.; Lee C.; Stoliarov S. I.; Marshall A. W.; Comprehensive Analysis of Dynamics and Hazards Associated with Cascading Failure in 18650 Lithium Ion Cell Arrays; Applied Energy; vol. 248; pp. 415-428 (2019); https://doi.org/10.1016/j.apenergy.2019.04.141
  16. Hamel C.; Raffan-Montoya F.; Stoliarov S. I.; A Method for Measurement of Spatially Resolved Radiation Intensity and Radiative Fraction of Laminar Flames of Gaseous and Solid Fuels; Experimental Thermal and Fluid Science; vol. 104; pp. 153-163 (2019); https://doi.org/10.1016/j.expthermflusci.2019.02.012
  17. Ding Y.; Stoliarov S. I.; Kraemer R. H.; Pyrolysis Model Development for a Polymeric Material Containing Multiple Flame Retardants: Relationship between Heat Release Rate and Material Composition; Combustion and Flame; vol. 202; pp. 43-57 (2019); https://doi.org/10.1016/j.combustflame.2019.01.003
  18. McCoy C. G.; Tilles J. L.; Stoliarov S. I.; Empirical Model of Flame Heat Feedback for Simulation of Cone Calorimetry; Fire Safety Journal; vol. 103; pp. 38-48 (2019); https://doi.org/10.1016/j.firesaf.2018.11.006
  19. Swann J. D.; Ding Y.; Stoliarov S. I.; Characterization of Pyrolysis and Combustion of Rigid Poly(vinyl chloride) using Two-dimensional Modeling; International Journal of Heat and Mass Transfer; vol. 132; pp. 347-361 (2019); https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.011
  20. Gong J.; Stoliarov S. I. Shi L.; Li J.; Zhu S.; Zhou Y.; Wang Z.; Analytical Prediction of Pyrolysis and Ignition Time of Translucent Fuel Considering both Time-dependent Heat Flux and In-depth Absorption; Fuel; vol. 235; pp. 913-922 (2019); https://doi.org/10.1016/j.fuel.2018.08.042
  21. Said A. O.; Lee C.; Liu X.; Wu Z.; Stoliarov S. I.; Simultaneous Measurement of Multiple Thermal Hazards Associated with a Failure of Prismatic Lithium Ion Batteries; Proceedings of the Combustion Institute; vol. 37; pp. 4173–4180 (2019); https://doi.org/10.1016/j.proci.2018.05.066
  22. Ding Y.; Kwon K.; Stoliarov S. I.; Kraemer R. H.; Development of a Semi-global Reaction Mechanism for Thermal Decomposition of a Polymer Containing Reactive Flame Retardant; Proceedings of the Combustion Institute; vol. 37; pp. 4247–4255 (2019); https://doi.org/10.1016/j.proci.2018.05.073
  23. Friedman A. N.; Danis P. I.; Fiola G. J.; Barnes C. A.; Stoliarov S. I.; Acoustically Enhanced Water Mist Suppression of Heptane Fueled Flames; Fire Technology; vol. 54; pp. 1829–1840 (2018); https://doi.org/10.1007/s10694-018-0777-0
  24. Ding Y.; Stoliarov S. I.; Kraemer R. H.; Development of a Semi-global Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-fiber-reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate; Polymers; vol. 10; pp. 1137-1151 (2018); https://doi.org/10.3390/polym10101137
  25. Brown A.; Bruns M.; Gollner M.; Hewson J.; Maragkos G.; Marshall A.; McDermott R.; Merci B.; Rogaume T.; Stoliarov S.; Torero J.; Trouve A.; Wang Y.; Weckman E.; Proceedings of the First Workshop Organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena (MaCFP); Fire Safety Journal; vol. 101; pp. 1-17 (2018); https://doi.org/10.1016/j.firesaf.2018.08.009
  26. Lannon C. M.; Stoliarov S. I.; Lord J. M.; Leventon I. T.; A Methodology for Predicting and Comparing the Full-scale Fire Performance of Similar Materials based on Small-scale Testing; Fire and Materials; vol. 42; pp. 710-724 (2018); https://doi.org/10.1002/fam.2524
  27. Liu X.; Wu Z.; Stoliarov S. I.; Denlinger M.; Masias A.; Snyder K.; A Thermo-kinetic Model of Thermally-induced Failure of a Lithium Ion Battery: Development, Validation and Application; Journal of The Electrochemical Society; vol. 165; pp. A2909-A2918 (2018); https://doi.org/10.1149/2.0111813jes
  28. Raffan-Montoya F.; Stoliarov S. I.; LevchikS.; Eden E.; Screening Flame Retardants using Milligram-scale Flame Calorimetry; Polymer Degradation and Stability; vol. 151; pp. 12-24 (2018); https://doi.org/10.1016/j.polymdegradstab.2018.02.018
  29. Stoliarov S. I.; Zeller O.; Morgan A. B.; Levchik S; An Experimental Setup for Observation of Smoldering-to-Flaming Transition on Flexible Foam/Fabric Assemblies; Fire and Materials; vol. 42; pp. 128-133 (2018); https://doi.org/10.1002/fam.2464
  30. Friedman A. N.; Stoliarov S. I.; Acoustic Extinction of Laminar Line-Flames; Fire Safety Journal; vol. 93; pp. 102-113 (2017); https://doi.org/10.1016/j.firesaf.2017.09.002
  31. Swann J. D.; Ding Y.; McKinnon M. B.; Stoliarov S. I.; Controlled Atmosphere Pyrolysis Apparatus II (CAPA II): A New Tool for Analysis of Pyrolysis of Charring and Intumescent Polymers; Fire Safety Journal; vol. 91; pp. 130-139 (2017); https://doi.org/10.1016/j.firesaf.2017.03.038
  32. Leventon I. T.; Korver K. T.; Stoliarov S. I.; A Generalized Model of Flame to Surface Heat Feedback for Laminar Wall Flames; Combustion and Flame; vol. 179; pp. 338-353 (2017); https://doi.org/10.1016/j.combustflame.2017.02.007
  33. McKinnon M. B.; Ding Y.; Stoliarov S. I.; Crowley S.; Lyon R. E.; Pyrolysis Model for a Carbon Fiber/Epoxy Structural Aerospace Composite; Journal of Fire Sciences; vol. 35; pp. 36-61 (2017); https://doi.org/10.1177/0734904116679422
  34. Stoliarov S. I.; Raffan-Montoya F.; Walters R. N.; Lyon R. E.; Measurement of the Global Kinetics of Combustion for Gaseous Pyrolyzates of Polymeric Solids Containing Flame Retardants; Combustion and Flame; vol. 173; pp. 65-76 (2016); https://doi.org/10.1016/j.combustflame.2016.08.006
  35. Liu X.; Wu Z.; Stoliarov S. I.; Denlinger M.; Masias A.; Snyder K.; Heat Release during Thermally-induced Failure of a Lithium Ion Battery: Impact of Cathode Composition; Fire Safety Journal; vol. 85; pp. 10-22 (2016); https://doi.org/10.1016/j.firesaf.2016.08.001
  36. Ding Y.; McKinnon M. B.; Stoliarov S. I.; Fontaine G.; Bourbigot S.; Determination of Kinetics and Thermodynamics of Thermal Decomposition for Polymers Containing Reactive Flame Retardants: Application to Poly(lactic acid) Blended with Melamine and Ammonium Polyphosphate; Polymer Degradation and Stability; vol. 129; pp. 347-362 (2016); https://doi.org/10.1016/j.polymdegradstab.2016.05.014
  37. Stoliarov S. I.; Li J.; Parameterization and Validation of Pyrolysis Models for Polymeric Materials; Fire Technology; vol. 52; pp. 79-91 (2016); https://doi.org/10.1007/s10694-015-0490-1
  38. Liu L.; Zachariah M. R.; Stoliarov S. I.; Li J.; Enhanced Thermal Decomposition Kinetics of Poly(lactic acid) Sacrificial Polymer Catalyzed by Metal Oxide Nanoparticles; RSC Advances; 2015; vol. 5; pp. 101745-101750; https://doi.org/10.1039/c5ra19303f
  39. Raffan-Montoya F.; Ding X.; Stoliarov S. I.; Kraemer R. H.; Measurement of Heat Release in Laminar Diffusion Flames Fueled by Controlled Pyrolysis of Milligram-sized Solid Samples: Impact of Bromine- and Phosphorus-based Flame Retardants; Combustion and Flame; vol. 162; pp. 4660-4670 (2015); https://doi.org/10.1016/j.combustflame.2015.09.031
  40. McKinnon M. B.; Stoliarov S. I.; Pyrolysis Model Development for a Multilayer Floor Covering; Materials; vol. 8; pp. 6117-6153 (2015); https://doi.org/10.3390/ma8095295
  41. Leventon I. T.; Li J.; Stoliarov S. I.; A Flame Spread Simulation Based on a Comprehensive Solid Pyrolysis Model Coupled with a Detailed Empirical Flame Structure Representation; Combustion and Flame; vol. 162; pp. 3884-3895 (2015); https://doi.org/10.1016/j.combustflame.2015.07.025
  42. Li J.; Gong J.; Stoliarov S. I.; Development of Pyrolysis Models for Charring Polymers; Polymer Degradation and Stability; vol. 115; pp. 138-152 (2015); https://doi.org/10.1016/j.polymdegradstab.2015.03.003
  43. Fisher R. P.; Stoliarov S. I.; Keller M. R.; A Criterion for Thermally-induced Failure of Electrical Cable; Fire Safety Journal; vol. 72; pp. 33-39 (2015); https://doi.org/10.1016/j.firesaf.2015.02.002
  44. Liu X.; Stoliarov S. I.; Denlinger M.; Masias A.; Snyder K.; Comprehensive Calorimetry of the Thermally-Induced Failure of a Lithium Ion Battery; Journal of Power Sources; vol. 280; pp. 516-525 (2015); https://doi.org/10.1016/j.jpowsour.2015.01.125
  45. Safronava N.; Lyon R. E.; Crowley S.; Stoliarov S. I.; Effect of Moisture on Ignition Time of Polymers; Fire Technology; vol. 51; pp. 1093-1112 (2015); https://doi.org/10.1007/s10694-014-0434-1
  46. Mhike W.; Ferreira I. V. W.; Li J.; Stoliarov S. I.; Focke W. W.; Flame Retarding Effect of Graphite in Rotationally Molded Polyethylene/Graphite Composites; Journal of Applied Polymer Science; vol. 132; #41472 (2015); https://doi.org/10.1002/app.41472
  47. Li J.; Gong J.; Stoliarov S. I.; Gasification Experiments for Pyrolysis Model Parameterization and Validation; International Journal of Heat and Mass Transfer; vol. 77; pp. 738-744 (2014); https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.003
  48. Semmes M. R.; Liu X.; McKinnon M. B.; Stoliarov S. I.; Witkowski A.; A Model for Oxidative Pyrolysis of Corrugated Cardboard; Proceedings of the Eleventh International Symposium on Fire Safety Science; pp. 111-123 (2014); https://www.iafss.org/publications/fss/11/111/view/fss_11-111.pdf
  49. Li J.; Stoliarov S. I.; Measurement of Kinetics and Thermodynamics of the Thermal Degradation for Charring Polymers; Polymer Degradation and Stability; vol. 106; pp. 2-15 (2014); https://doi.org/10.1016/j.polymdegradstab.2013.09.022
  50. Stoliarov S. I.; Leventon I. T.; Lyon R. E.; Two-dimensional Model of Burning for Pyrolyzable Solids; Fire and Materials; vol. 38; pp. 391-408 (2014); https://doi.org/10.1002/fam.2187
  51. Lyon R. E.; Safronava N.; Quintiere J. G.; Stoliarov S. I.; Walters R. N.; Crowley S.; Material Properties and Fire Test Results; Fire and Materials; vol. 38; pp. 264-278 (2014); https://doi.org/10.1002/fam.2179
  52. McKinnon M. B.; Stoliarov S. I.; Witkowski A.; Development of a Pyrolysis Model for Corrugated Cardboard; Combustion and Flame; vol. 160; pp. 2595-2607 (2013); https://doi.org/10.1016/j.combustflame.2013.06.001
  53. Linteris G. T.; Lyon R. E.; Stoliarov S. I.; Prediction of the Gasification Rate of Thermoplastic Polymers in Fire-like Environments; Fire Safety Journal; vol. 60; pp. 14-24 (2013); https://doi.org/10.1016/j.firesaf.2013.03.018
  54. Li J.; Stoliarov S. I.; Measurement of Kinetics and Thermodynamics of the Thermal Degradation for Non-charring Polymers; Combustion and Flame; vol. 160; pp. 1287-1297 (2013); https://doi.org/10.1016/j.combustflame.2013.02.012
  55. Novak C. J.; Stoliarov S. I.; Keller M. R.; Quintiere J. G.; An Analysis of Heat Flux Induced Arc Formation in a Residential Electrical Cable; Fire Safety Journal; vol. 55; pp. 61-68 (2013); https://doi.org/10.1016/j.firesaf.2012.10.007
  56. Leventon I. T.; Stoliarov S. I.; Evolution of Flame to Surface Heat Flux during Upward Flame Spread on Poly(methyl methacrylate); Proceedings of the Combustion Institute; vol. 34;  pp. 2523-2530 (2013); https://doi.org/10.1016/j.proci.2012.06.051
  57. Lyon R. E.; Safronava N.; Senese J.; Stoliarov S. I.; Thermokinetic Model of Sample Response in Nonisothermal Analysis; Thermochimica Acta; vol. 545; pp. 82-89 (2012); https://doi.org/10.1016/j.tca.2012.06.034
  58. Kempel F.; Schartel B.; Linteris G. T.; Stoliarov S. I.; Lyon R. E.; Walters R. N.; Hofmann A.; Prediction of the Mass Loss Rate of Polymer Materials: Impact of Residue Formation; Combustion and Flame; vol. 159; pp. 2974-2984 (2012); https://doi.org/10.1016/j.combustflame.2012.03.012
  59. Oztekin E. S.; Crowley S. B.; Lyon R. E.; Stoliarov S. I.; Patel P.; Hull T. R.; Sources of Variability in Fire Test Data: A Case Study on Poly(aryl ether ketone) (PEEK); Combustion and Flame; vol. 159; pp. 1720-1731 (2012); https://doi.org/10.1016/j.combustflame.2011.11.009
  60. Yates D. A.; Campbell C. K.; Stoliarov S. I.; Sunderland P. B.; Liquid Expansion in Glass Sprinkler Bulbs; Proceedings of the Tenth International Symposium on Fire Safety Science; pp. 335-344 (2011); https://www.iafss.org/publications/fss/10/335/view/fss_10-335.pdf
  61. Smith K. D.; Bruns M.; Stoliarov S. I.; Nyden M. R.; Ezekoye O. A.; Westmoreland P. R.; Assessing the Effect of Molecular Weight on the Kinetics of Backbone Scission Reactions in Polyethylene using Reactive Molecular Dynamics; Polymer; vol. 52; pp. 3104-3111 (2011); https://doi.org/10.1016/j.polymer.2011.04.035
  62. Patel P.; Hull T. R.; Lyon R. E.; Stoliarov S. I.; Walters R. N.; Crowley S.; Safronava N.; Investigation of the Thermal Decomposition and Flammability of PEEK and Its Carbon and Glass-fibre Composites; Polymer Degradation and Stability; vol. 96; pp. 12-22 (2011); https://doi.org/10.1016/j.polymdegradstab.2010.11.009
  63. Stoliarov S. I.; Crowley S.; Walters R. N.; Lyon R. E.; Prediction of the Burning Rates of Charring Polymers; Combustion and Flame; vol. 157; pp. 2024-2034 (2010); https://doi.org/10.1016/j.combustflame.2010.03.011
  64. Lyon R. E.; Takemori M. T.; Safronava N.; Stoliarov S. I.; Walters R. N.; A Molecular Basis for Polymer Flammability; Polymer; vol. 50; pp. 2608-2617 (2009); https://doi.org/10.1016/j.polymer.2009.03.047
  65. Stoliarov S. I.; Safronava N.; Lyon R. E.; The Effect of Variation in Polymer Properties on the Rate of Burning; Fire and Materials; vol. 33; pp. 257-271 (2009); https://doi.org/10.1002/fam.1003
  66. Stoliarov S. I.; Crowley S.; Lyon R. E.; Linteris G. T.; Prediction of the Burning Rates of Non-Charring Polymers; Combustion and Flame; vol. 156; pp. 1068-1083 (2009); https://doi.org/10.1016/j.combustflame.2008.11.010
  67. Stoliarov S. I.; Lyon R. E.; Thermo-Kinetic Model of Burning for Pyrolyzing Materials; Proceedings of the Ninth International Symposium on Fire Safety Science; pp. 1141-1152 (2009); https://www.iafss.org/publications/fss/9/1141/view/fss_9-1141.pdf
  68. Nyden M. R.; Stoliarov S. I.; Calculations of the Energy of Mixing Carbon Nanotubes with Polymers; Polymer; vol. 49; pp. 635-641 (2008); https://doi.org/10.1016/j.polymer.2007.11.056
  69. Stoliarov S. I.; Walters R. N.; Determination of the Heats of Gasification of Polymers using Differential Scanning Calorimetry; Polymer Degradation and Stability; vol. 93; pp. 422-427 (2008); https://doi.org/10.1016/j.polymdegradstab.2007.11.022
  70. Lyon R. E.; Walters R. N.; Stoliarov S. I.; Screening Flame Retardants for Plastics using Microscale Combustion Calorimetry; Polymer Engineering and Science; vol. 47; pp. 1501-1510 (2007); https://doi.org/10.1002/pen.20871
  71. Lyon R. E.; Walters R. N.; Stoliarov S. I.; Thermal Analysis of Flammability; Journal of Thermal Analysis and Calorimetry; vol. 89; pp. 441-448 (2007); https://doi.org/10.1007/s10973-006-8257-z
  72. Stoliarov S. I.; Walters R. N.; Lyon R. E.; A Method for Constant-Rate Heating of Milligram-Sized Samples; Journal of Thermal Analysis and Calorimetry; vol. 89; pp. 367-371 (2007); https://doi.org/10.1007/s10973-006-8164-3
  73. Smith K. D.; Stoliarov S. I.; Nyden M. R.; Westmoreland P. R.; RMDff: A Smoothly Transitioning, Forcefield-Based Representation of Kinetics for Reactive Molecular Dynamics Simulations; Molecular Simulation; vol. 33; pp. 361-368 (2007); https://doi.org/10.1080/08927020601156392
  74. Lyon R. E.; Speitel L.; Filipczak R.; Walters R.; Crowley S.; Stoliarov S. I.; Castelli L.; Ramirez M.; Fire Smart DDE Polymers; High Performance Polymers; vol. 19; pp. 323-355 (2007); https://doi.org/10.1177/0954008306073720
  75. Lyon R. E.; Walters R. N.; Stoliarov S. I.; A Thermal Analysis Method for Measuring Polymer Flammability; Journal of ASTM International; vol. 3; No. 4; pp. 1-18 (2006); https://doi.org/10.1520/JAI13895
  76. Jee C. S. Y.; Guo Z. X.; Stoliarov S. I.; Nyden M. R.; Experimental and Molecular Dynamics Studies of the Thermal Decomposition of a Polyisobutylene Binder; Acta Materialia; vol. 54; pp. 4803-4813 (2006); https://doi.org/10.1016/j.actamat.2006.06.014
  77. Stoliarov S. I.; Lyon R. E.; Nyden M. R.; A Reactive Molecular Dynamics Model of Thermal Decomposition in Polymers: II. Polyisobutylene; Polymer; vol. 45; pp. 8613-8621 (2004); https://doi.org/10.1016/j.polymer.2004.10.023
  78. Nyden M. R.; Stoliarov S. I.; Westmoreland P. R.; Guo Z. X.; Jee C.; Applications of Reactive Molecular Dynamics to the Study of the Thermal Decomposition of Polymers and Nanoscale Structures; Materials Science and Engineering A; vol. 365; pp. 114-121 (2004); https://doi.org/10.1016/j.msea.2003.09.060
  79. Stoliarov S. I.; Westmoreland P. R.; Mechanism of the Thermal Decomposition of Bisphenol C Polycarbonate: Nature of Its Fire Resistance; Polymer; vol. 44; pp. 5469-5475 (2003); https://doi.org/10.1016/S0032-3861(03)00576-7
  80. Stoliarov S. I.; Westmoreland P. R.; Nyden M. R.; Forney G. P.; A Reactive Molecular Dynamics Model of Thermal Decomposition in Polymers: I. Poly(methyl methacrylate); Polymer; vol. 44; pp. 883-894 (2003); https://doi.org/10.1016/S0032-3861(02)00761-9
  81. Stoliarov S. I.; Knyazev V. D.; Slagle I. R.; Computational Study of the Mechanism and Product Yields in the Reaction Systems C2H3 + CH3«  C3H6«  H + C3H5 and C2H3 + CH3® CH4 + C2H2; Journal of Physical Chemistry A; vol. 106; pp. 6952-6966 (2002); https://doi.org/10.1021/jp014059j
  82. Stoliarov S. I.; Bencsura Á.; Shafir E.; Knyazev V. D.; Slagle I. R.; Kinetics of the Reaction of the CHCl2 Radical with Oxygen Atoms; Journal of Physical Chemistry A; vol. 105; pp. 76-81 (2001); https://doi.org/10.1021/jp0018293
  83. Stoliarov S. I.; Knyazev V. D.; Slagle I. R.; Experimental Study of the Reaction between Vinyl and Methyl Radicals in the Gas Phase. Temperature and Pressure Dependence of Overall Rate Constants and Product Yields; Journal of Physical Chemistry A; vol. 104; pp. 9687-9697 (2000); https://doi.org/10.1021/jp992476e
  84. Knyazev V. D.; Stoliarov S. I.; Slagle I. R.; Kinetics of the Reaction of Vinyl Radicals with Acetylene; Proceedings of the Twenty-Sixth Symposium (International) on Combustion; pp. 513-519 (1996); https://doi.org/10.1016/S0082-0784(96)80254-2
  85. Knyazev V. D.; Bencsura Á.; Stoliarov S. I.; Slagle I. R.; Kinetics of the C2H3 + H2«  H + C2H4 and CH3 + H2« H + CH4 Reactions; Journal of Physical Chemistry; vol. 100; pp. 11346-11354 (1996); https://doi.org/10.1021/jp9606568
  86. Yermakov A. N.; Poskrebyshev G. A.; Stoliarov S. I.; Temperature Dependence of the Branching Ratio of SO5- Radicals Self-Reaction in Aqueous Solution; Journal of Physical Chemistry; vol. 100; pp. 3557-3560 (1996); https://doi.org/10.1021/jp951330m
  87. Yermakov A. N.; Zhitomirsky B. M.; Poskrebyshev G. A.; Stoliarov S. I.; Kinetic Study of SO5- and HO2 Radicals Reactivity in Aqueous Phase Bisulfite Oxidation; Journal of Physical Chemistry; vol. 99; pp. 3120-3127 (1995); https://doi.org/10.1021/j100010a023

Engineering Graduate Students Win Best Paper at International Conference

Chris Lee and Ahmed Said recognized at Interflam 2019.

Graduate Students Selected as Future Faculty Fellows

Seven graduate students were chosen as Clark School Future Faculty Fellows this year.

Wood Stove Decathlon Team Featured in Popular Mechanics

Team Mulciber’s near-emissionless device teaches old technology new tricks.